PRIMARY SIX
SELF STUDY MATERIALS
ENGLISH LANGUAGE

LESSON 1: Use of Adverbs

Learning Outcomes
By the end of this lesson, you should be able to:

i) identify ways of doing things.
ii) use of adverbs in your daily life activities.

You will need:
• a pen
• a book

Introduction
An adverb is a word that tells more about a verb, an adjective and another adverb. Adverbs tell us how an action is done: when? why? how? and where?

Examples
i) The cyclist is riding slowly.
ii) Children should cross the road carefully.

Activity 1
Use the correct form of the word in the brackets to complete the sentences below. Examples have been given to guide you.

1. Tino cleverly avoided the punishment. (clever)
2. Uganda's population is steadily rising. (steady)
3. St Thomas choir sang the second compulsory song beautifully. (beauty)
4. The host welcomed us enthusiastically. (cheer)
5. We patiently waited for his return from Ojipaku market. (patience)
6. Italians have seen the worse coronavirus attacked. (worse)
7. They answered the question wisely. (wise)
8. A machete is usually bigger than a knife. (usual)
9. The hungry boy ate the mango greedily. (greed)
10. The hunter bravely attacked the lion in its den. (brave)

Activity 2
Order of Adverbs
When more than one adverb is used in a sentence, they usually follow in this order: manner (how?), place (where?) and time (when?).

Example
The pedestrian crossed the road carefully (how?) at the zebra crossing (where?) yesterday (when?).

From the sentences below, underline the adverbs of manner, place and time.

1. The traffic officer called the driver loudly at the junction in the morning.
2. Many cyclists ride carelessly at the traffic lights every day.
3. The bus driver spoke politely to the passenger on the bus on Tuesday.
4. My mother nicely made cakes from the kitchen last weekend.
5. It rained heavily in our area last year.

LESSON 2: Informal Letter Writing

Learning Outcomes
By the end of this lesson, you should be able to:

i) express your views on safety on the road.
ii) write a letter about safety on the road.

Introduction
Letter writing is one way of sending a message between or among people. You can write a letter to a friend, parents, relatives and many others.

Activity 1
(a) Write a letter to your father appreciating him for his effort to keep everybody well in this period of COVID-19 pandemic. Wish him a longer stay in this life. Use your school address.
(b) The letter below has some words missing. Using the words in the box, complete it by filling in the gaps correctly.

reap advise purpose academic not arua discussions hear dear examinations...
CONTINUATION

(9) (d) (i) The photocell or photoelectric cell is an electronic device that works on the principle of photoelectric effect and converts light energy into electrical energy. It consists of an evacuated glass tube containing two electrodes; the emitter or cathode (C) and Collector or anode (A). The cathode is always kept at a negative potential relative to anode.

Principle of operation
The emitter is connected to the negative terminal and the collector is connected to the positive terminal of the battery. The emitter is irradiated with a radiation of frequency higher than the threshold frequency of the material of the emitter. Photoelectric emission takes place.

The photo electrons are attracted to the collector which is at a positive potential with respect to the emitter. Thus current flows in the circuit. If the intensity of the incident radiation is increased, the photo current increases. Photo cells are applied in burglar alarms, lux meters, exposure meters, etc.

(iii) Derive the equation,

\[B_2qv = m \frac{v^2}{r} \]

In the region between S_3 and S_4, cross electric and magnetic fields are applied. At equilibrium, magnetic force on the ion is equal to electric force on the ion.

i.e. \[B_2qv = Eq; \quad v = \frac{E}{B_2} \]

Ions passing through S_3 have same velocity. So the region across the electric and magnetic fields is called a velocity selector.

Beyond S_3, the ions pass through a uniform magnetic field of intensity B_2, they are deflected in a circular path of radius r and hit the photographic plate.

The centripetal force acting on the ions in this region is provided by the magnetic force on the ions.

This implies that:

\[B_2qv = m \frac{v^2}{r} \]

Equating Eq (i) and (ii),

\[\frac{E}{B_2} = \frac{B_2q}{m} \]

So if E, B, B_2 and r are known, then the specific charge of the ions can be determined.

(b). B_2qv = Eq

The centripetal force is provided by the magnetic force

\[B_2qv = m \frac{v^2}{r} \]

Putting Eq (a) into (b), we obtain

\[B_2 = \frac{mv^2}{q} \]

But the beam is singly ionized.

This implies that q = 1.6 x 10^{-19} C = Ckg^{-1}

(b).

Also read about:
- Applications of photoelectric effect
- The laws/features/characteristics/main observations of photoelectric effect
- Definitions and meaning of the terms like (threshold frequency, threshold wave length, work function etc.
- The classical and quantum theories and their failures and strengths (the fact that these theories do not contradict but they are complementary)
- Einstein’s equation of photoelectric effect etc.

10. (a) (i). The specific charge of an ion is the ratio of its charge to its mass.

(ii) The S.I unit of specific charge is Ckg^{-1}

PHYSICS QUESTIONS (APHY 004)

Acceleration due to gravity, g = 9.81 m s^{-2}

Speed of light in Vacuum, c = 3.0 x 10^8 m s^{-1}

Speed of sound in air, v = 340 m s^{-1}

Electronic charge, e = 1.6 x 10^{-19} C

Electronic mass, m = 9.11 x 10^{-31} kg

Permeability of free space, \mu_0 = 4.0 x 10^{-7} H m^{-1}

Permittivity of free space, \epsilon_0 = 8.85 x 10^{-12} F m^{-1}

The Constant, \frac{1}{4\pi}\mu_0\epsilon_0 = 9.0 \times 10^9 F^{-1} m^{-1}

SECTION A

1. (a) (i) Define the term principal focus of a concave mirror.

(ii) Derive the equation, \frac{1}{u} + \frac{1}{v} = \frac{1}{f} using a concave mirror where u, v and f have their usual meanings.

(b) Explain how a sextant can be used to measure the angle of elevation of the Sun.

(c) (i) Define the term angular magnification.

(ii) Draw a diagram to show the formation of an image of a distant object by a terrestrial telescope in normal adjustment and hence, derive an expression for the angular magnification

(d) (i) A compound microscope consists of two converging lenses of focal lengths 1.0 cm and 5.0 cm respectively. An object is placed 1.1 cm from the objective and the microscope is adjusted so that the final image is formed 30 cm from the eye piece. Calculate the separation of the lenses.

(ii) State any two differences between a compound microscope and an astronomical telescope.

2. (a) Define the term refractive index as applied to refraction of light.
(b) With the aid of ray diagrams, explain the terms critical angle and total internal reflection.

(c) Figure 1 below shows a glass block 8 cm thick placed in a liquid of refractive index 1.42. When a ray of light is incident on the glass at 50°, the lateral displacement in the glass is 1.78 cm. Find the refractive index of glass.

Figure 1

(d) (i) Derive an expression for the refractive index of a glass prism in terms of the refracting angle A and the angle of minimum deviation D.
(ii) A string of length 1.0 m and mass 10.0 g is stretched between two fixed points. If the tension in the string is 200 N, find the frequency of the second harmonic.

(b) Describe with the aid of a labelled diagram, an experiment to determine resonance of sound in air.

(c) (i) What is meant by doppler effect?
(ii) A motorcyclist and a police car are approaching each other moving at speeds of 20ms⁻¹ and 30 ms⁻¹ respectively. If the police siren is sounded at 600 Hz, calculate the frequency of the note heard by the cyclist after the police car passes by.

(d) (i) What is meant by beats?
(ii) By using the principle of superposition of waves, explain the formation of beats.

(e) Describe the variation of pressure with displacement of air in a closed pipe vibrating with fundamental frequency.

4. (a) Describe the term diffraction of waves.

(b) By using the Huygen’s principle, explain the diffraction pattern produced by a single slit.

(c) A parallel beam of monochromatic light of wave length 600nm is directed normally to a diffraction grating which has 650 lines per mm. Determine the:
(i) number of diffraction images
(ii) angle of diffraction of the highest order diffraction image.

(d) (i) Describe how polarized light can be produced by reflection.
(ii) State two uses of polarized light.
(e) State three differences between the spectra produced by a prism and a diffraction grating.

SECTION C

5. (a) Define the terms tesla and magnetic flux density.
(b) Two infinitely long straight wires carrying currents, I₁ and I₂ are placed parallel to each other in a vacuum at a distance, d metres apart. Derive the expression for the force per metre between the wires.
(c) (i) Write an expression for the magnetic flux density, B at the centre of a circular coil of N turns each of radius, r and carrying a current I₁.
(ii) A wire of length 12.0 m is wound into a circular coil of radius 0.15 m. If a current of 4 A passes through the coil, find the magnetic flux density at the centre of the coil.
(d) (i) Describe with the aid of a labelled diagram, the structure and mode of operation of a moving coil galvanometer.
(ii) Explain the structural modification needed to convert an A.C generator to a D.C generator.

PHYSICS QUESTIONS (APHY 004)

6. (a) (i) State the laws of electromagnetic induction.
(ii) Describe an experiment to verify Faraday’s law of electromagnetic induction.

(b) Define the terms self-induction and mutual induction.

(c) A transformer has 3000 turns in the primary coil. The primary coil is connected to a 240 V mains. A 12 V, 36W lamp is connected to the secondary coil. If the efficiency of the transformer is 80%, determine the:
(i) number of turns in the secondary coil
(ii) current flowing in the primary coil

(d) (i) Explain the term back emf in a d.c motor.
(ii) State the significance of back emf in a d.c motor.
(iii) Show how the back emf in a motor is related to the efficiency of the motor.

7. (a) Define the terms peak value and root mean square of an alternating current.
(b) A resistor of resistance 200 Ω is connected across an alternating voltage, \(V = 20 \sin 60t \) V.
(i) Find the frequency of the alternating voltage.
(ii) Calculate the mean power dissipated in the resistor.
(c) (i) An alternating voltage is applied across a capacitor of capacitance C. Show that the current in the circuit leads the voltage by \(\frac{\pi}{4} \).
(ii) Find the expression for the capacitive reactance in terms of frequency, f and capacitance, C.
(iii) A capacitor of capacitance 0.2 µF is in series with an a.c source of frequency 1000 Hz. If the r.m.s value of the current flowing is 12 mA, calculate the voltage across the capacitor.

(d) With the aid of a diagram, describe how a half wave rectifier type meter works.

(e) Explain the advantage of a.c over d.c in power transmission.

SECTION D

8. (a) (i) State two characteristics of an equipotential surface.
(ii) Give one example of an equipotential surface.
(b) (i) With the aid of a labelled diagram, describe the structure and action of the Van der Graaf generator.
(ii) Outline briefly the factors that limit maximum voltage obtainable in a Van de Graaf generator.

(c) Explain how two insulating bodies rubbed together acquire charge.

9. (a) (i) Define the term capacitance of a capacitor.
(ii) Derive an expression for the energy stored in a capacitor of capacitance, C and charged to a potential difference V.

(b) (i) Explain the effect of placing an insulator between the plates of a charged capacitor.
(ii) What would happen if a conductor instead of the insulator was placed between the plates of the capacitor.
(iii) Give two uses of a dielectric.

(c) A capacitor of capacitance, C is fully charged from a 300 V battery. It is then discharged through a small coil of resistance 20 Ω. With both switches K1 and K2 open, determine the:
(i) e.m.f of cell Y
(ii) internal resistance, r of Y
(iii) balance length when both K1 and K2 are closed.

(d) The circuit in figure 3 shows a network of capacitors connected across a 12 V d.c supply.

10. (a) (i) Define electromotive force of a battery.
(ii) A cell of e.m.f E and internal resistance, r drives current through a resistor of resistance R connected in series with it. Derive an expression for the efficiency of the circuit.

(b) A variable external resistance R is connected across a d.c source of e.m.f, E, having internal resistance r, S
(i) Show that the maximum power output \(P_{\text{max}} = \frac{E^2}{4R} \)
(ii) Sketch a graph showing variation of power output against resistance.

In figure 4 above, X is a cell of e.m.f 2 V and negligible internal resistance. AB is a uniform slide wire of length 100 cm and resistance 20 Ω. With both switches K1 and K2 open, the balance length AP = 90.0 cm. When K2 is closed and K1 left open, the balance length is 75.5 cm. Calculate the:
(i) e.m.f of cell Y
(ii) internal resistance, r of Y
(iii) balance length when both K1 and K2 are closed.

(d) Describe with the aid of a circuit diagram how you would measure the temperature coefficient of resistance of a material in form of a wire.
Plant G: At 10 percentage light intensity, plant G had the least carbon dioxide absorption. From 0 to 110 percentage light intensity, its carbon dioxide absorption increased gradually. (ii) Plant H: At 10 percentage light intensity, plant H had the least carbon dioxide absorption. From 0 to 25 percentage light intensity, its carbon dioxide absorption increased rapidly. From 25 to 35 percentage light intensity, the carbon dioxide absorption increased gradually. From 35 to 110 percentage light intensity, its carbon dioxide absorption remained constant.

b) (i) On the graph.

(ii) This is the light intensity at which the rate of photosynthesis utilizing oxygen produced by the plant during respiration and the exact amount of oxygen produced as waste product of photosynthesis is utilized wholly in respiration without exchange of these gases with the surrounding environment.

Plant G requires a relatively higher percentage light intensity (33 to 34) to chemically split (photolysis) the amount of water in the thylakoid membranes of chloroplasts to produce specific amount of oxygen molecules required by the plant to satisfy the rate of respiration without releasing any excess to the surrounding.

2H₂O(l) light energy → 4H⁺(aq) + O₂(g) + 4e⁻

The total amount of oxygen produced in this process is wholly utilised in respiration.

The protons (H⁺) produced are just sufficient enough to reduce Nicotinamide adenine dinucleotide phosphate (NADP⁺) to Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH₂). These protons of all the hydrogen ions are used in the dark stage of photosynthesis to reduce the whole carbon dioxide from respiration to produce carbohydrates.

\[\text{NADP}^+ + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{NADPH}_2 \]

(c) i) Plant G lives in open/sunny area/area with high light intensity.

Plant H lives under shade.

ii) Plant G has higher light compensation point and its rate of carbon dioxide absorption kept increasing as light intensity increased at higher percentages.

Plant H has lower light compensation point and its rate of carbon dioxide absorption reached its maximum at relatively low light intensity.

iii) In open habitat: During early period of association, plant H would have most of its chlorophyll bleached making it look pale green. Its rate of photosynthesis would be low. Due to little food produced, the plant would have a stunted growth. Meanwhile, plant G would have high light and carbon dioxide absorption. Its rate of photosynthesis would be high – hence much food would be produced. This results in rapid growth due to abundant food available for its metabolism. Eventually plant G would cast shade over plant H, which would begin to resynthesize more chlorophyll to increase its rate of light absorption – hence increasing the rate of photosynthesis. Subsequently, much food would be available to increase metabolism resulting in rapid growth once again.

In shaded habitat: During early period of association, plant G would have low light and carbon dioxide absorption. Its rate of photosynthesis would be low. Due to little food produced, the plant would have a stunted growth. Meanwhile, plant H would have optimum light and carbon dioxide absorption. Its rate of photosynthesis would be high – hence much food would be produced. This would result in rapid growth due to abundant food available for its metabolism. Plant H would cast more shade over plant G, which would have low ability to produce much chlorophyll and becomes etiolated. Plant G would die over long time of association.

(d) i) Temperature

ii) Reactions during photosynthesis are catalysed by enzymes such as ATP synthase, ATPase, RUBP carboxylase/RUBISCO enzymes to keep the soft pads in between the claws. They use this to detect preys from long distances or even when the preys passed the site sometime back.

Many have the sizes of pinnae (earlobes) being large to direct much sound waves into the ears, giving them acute sense of hearing.

Some have eyesight that is very powerful with the retina having many rods than cones to increase its sharpness in night vision. This explains why some are good night hunters.

Other secondary adaptations to improve on their vision are in having reflective layer (tapitum) behind the retina. This layer concentrates light onto the retina. Some day-light adapted hunters also have white mark below their eyes to reflect maximum amount of light while some have shaded areas around their eyes so that they are not easily recognised by their preys. This is particularly found in:

Most have some good camouflage ability because their fur colour blends suitably with grass background (especially in dry season when the grasses are dry).

Some have claws that are very long with flexible joints for fast running. Some plants have short legs to lower their centres of gravity for stability during the chase.

Most of them have flexible spine (vertebral column) flexibility in movement during the hunt.

The heads are mainly rounded and attached to short necks with strong muscles to give powerful grip as they subdue their preys. This is the reason why some have great strength kill much bigger animals like buffalos.

They also have enlarged and long canine teeth for firm grip of preys.

There are also enlarged and raised cusps with deeply rooted carnassial teeth for shearing flesh and providing firm support in that process.

Great success can also be attributed to their ability to stalk their preys. This is because of them have limbs with sharp retractable claws that allows the tiger to move stealthily and run in straight lines faster than a cheetah.

(ii) They have abilities to instinctively:

- Use various communication methods that act as signals for group hunting
- Train their young ones with techniques of hunting
- Time prey with the enforcement of experience and decisively attack to kill.
- Stay long without food.
- Also their ability to digest the various food components that have been taken, including horns and bones.

(b) Some have eyes to lateral side of the head to give them lateral view that makes them to recognise preys from wide field of vision and seek escape.

Some have their heads elevated by the long necks and can turn at ease to increase field view.

Many have eyes - sights that are powerful for both day and night vision.

Possess of long muscular legs in some for fast running. In some species like giraffe, the heavily built muscles have powerful kicks that can kill big-sized predators like lions.

They have fur colours that camouflage well with the background so that it becomes difficult for predators to see them or may have stripes, like in zebra, that flicker to the predators making it difficult single out one animal to attack.

Some, like the monkeys and squirrels use intelligence by climbing to weak tree branches, which they know, cannot support heavy hunters.

Others have developed dangerous features like horns, spines and tasks for defence that can injure predators or hard shells which are too difficult to break. At times these features are only aggressively displayed to scare off the predators.

In some cases, animals of different species aggregate to seek protection from one another. In their association they can learn to communicate to each other in case of danger or one species may be too aggressive for predator of another species - hence can defend the latter.

Some seek protection underground which is hardly reached by the predators.

Many can remain still for long hours so that they are not easily recognised by predators passing by.

Most of them give birth during the hot day when the predators are inactive under shade or at night. This is followed by the mothers eating away the remnants to reduce scent of the young ones from easy detection by predators.

Some produce offensive, repellent or poisonous substances that deter the extent to which predators may attack them.

The young ones normally develop very fast to give them the ability to escape from predators. Some are known to run in less than an hour from the time of birth.

There is also great parental care given until the young ones are able to live an independent life. Even then such animals are known to aggregate in herds.

3. (a) Increases surface area for metabolic reactions in cells.

Rate of metabolic reactions can be controlled inside organelles because the organelle membrane controls the entry of reactants and exit of products.

Increases the rate of metabolic reactions because keeping enzymes for a particular metabolic reaction within an organelle maintains close proximity of the products with the next enzyme in sequence.

Potentially harmful reactants and products or enzymes can be isolated from the rest of the cell in an organelle.

(b) (i) Has a network of interconnected flattened sacs called cisternae.

The roughness is due presence of ribosomes which shed the membranes of the organelle.

This is continuous with the nuclear membrane.

(ii) Having extensive network of membrane system, it provides a large surface area for chemical reactions in a cell that depend on membrane system.

Having extensive network of membrane system also serves as a transport system within a cell to facilitate movement of materials within the cell.
4. (a) (i) Hardy-Weinberg equation expresses allele frequency in a population as:

\[p^2 + 2pq + q^2 = 1 \]

where \(p \) is frequency of dominant allele (W) and \(q \) is frequency of recessive allele (w).

Also the sum of the allele, \(p + q = 1 \)

To calculate the numbers of individuals of any category, the values of \(p \) and \(q \) must be determined as:

Number of individual who can wag ears is

\[450 - 378 = 72 \] individuals.

This represents a frequency of \(\frac{72}{450} = 0.16 \), which is 0.16 of the population.

This implies that \(q^2 = 0.16 \)

\[q = \sqrt{0.16} = 0.4 \]

Since \(p + q = 1 \)

\[p = 1 - 0.4 = 0.6 \]

The frequency of population who are heterozygous is represented by \(2pq \).

Therefore, \(2pq = 2 \times 0.6 \times 0.4 = 0.48 \)

Population represented by frequency of 0.48 is

\[\frac{0.48 \times 450}{1.00} = 216 \] individuals

(ii) Wagging ears is expressed due to homozygous recessive, \(ww \). The frequency is represented by \(q^2 \).

Since \(q = 0.4 \), it implies that \(q^2 = (0.4)^2 = 0.16 \)

Population represented by frequency of 0.16 is

\[\frac{0.16 \times 450}{1.00} = 72 \] individuals

(b) The population remains large.

There is random mating to give equal opportunity for alleles to be represented in the next generation.

All members of the population are fertile.

There is no pre-reproductive mortality.

There is no overlap between generations. i.e. no individuals of the previous generation survived in the next generation.

No mutations, which would reduce or increase the number of either allele.

5. (a) Isometric growth. This occurs when an organ grows at the same rate as the rest of the body. Therefore a change in size of organism is not accompanied by change in shape of the organism i.e. the relative proportions of the organs and the whole organism remain the same.

Allometric growth. This occurs when an organ grows at a different rate from the rest of the body. This therefore produces change in shape as the size increases.

Limited growth/definite growth/determinate growth. This is where growth of organism ceases/stops at maturity i.e. growth does not occur throughout life.

Unlimited growth/indeterminate growth. This is growth that occurs throughout life of an organism. The growth in a new year is added to the bulk growth of previous year that was already attained.

Intermittent growth in insects/discontinuous growth. This involves having a number of periods of extremely rapid growth followed by periods of little or no growth because of the need to shed of exoskeleton (moulting/ecdyisis) which prevents overall growth of the whole body, allowing growth to occur only in spurts.

(b) Secondary growth leads to formation of secondary xylem (wood), parenchyma rays among others. The formed xylem provides support to the large deposit of lignin in it and lateral support is provided by rays of parenchyma when fully turgid.

(c) In a short day plant

Longer periods of light result in accumulation of phytochrome far red which in high concentration inhibits secretion of flowering hormone florigen - hence no flowering occurs.

Shorter periods of light result in little amounts of phytochrome far red which then stimulates secretion of the flowering hormone - hence the flowering occurs.

In a long day plant

Longer periods of light result in accumulation of phytochrome far red which in high concentration stimulates secretion of flowering hormone hence flowering occurs.

6. (a) The coleoptiles bent towards the side without indoleacetic acid (IAA). The degree of bending increased more in coleoptiles where there was increased concentration of indoleacetic acid to a maximum at 1.3 µmole per dm3.

(b) (i) 1.3 µmole per dm3.

(ii) At this concentration the angle of curvature in degrees is highest. This implies that the highest numbers of cells dividing and expanding.

(c) When the coleoptile is exposed to unidirectional light rays, IAA becomes distributed more on the shady side. This would affect intended control of IAA required to be on one half of coleoptile to obtain curvature in one direction only. To maintain concentration of IAA on the side it was applied no light is required.

(d) Indoleacetic acid (IAA) attaches to the receptors in the nuclei of cells. The complex activates proton (H+) pump to increase hydrogen ion concentration. The increased acidic condition in the cells makes enzymes to break hydrogen bonds in cellulose in the cell walls and the fibrils are weakened leading to loosening of cell walls with the result that cell elongation occurs. At low IAA concentration of 0.2 µmole per dm3 fewer proton (H+) pump activated and fewer hydrogen ions are pumped – hence low growth. As concentration of IAA increases more proton (H+) pump activated. This keeps on increasing the concentration and higher growth on the side it was applied.

Write to us:
Email: learners@newvision.co.ug
SECTION A

1. Examine the causes and effects of land conflicts in your country.
2. "Women are primarily responsible for environmental degradation in the world." Discuss.
3. Examine the causes and suggest effective means of resolving the various child abuse cases in your community.
4. Justify the need for preserving certain African traditional values and customs in your community.

SECTION B

Read the following information and answer the questions that follow.

Oceania Transporters and Forwarders (U) Ltd is a Trucking Company which transports goods in the whole of the East Africa. During this period of the COVID-19 pandemic, their drivers as well as others are facing a lot of criticism due to the high number of coronavirus positive cases at the numerous border points. The Ugandan government has received a special consignment of Personal Protection Equipment (PPE) at Mombasa, which must be brought into the country speedily. It has, therefore, chosen five of its best truckers to collect the consignment.

Wsemwa — he was born in the last month of the second quarter of the same year as Otieno. He has spent 9 years in the Company.

Buladde — he is a couple of years older than Otieno and has spent half the time in the company that Mulongo has.

Otieno — he joined the company a decade ago when he was 37 years on his birthday in April and has been working there since.

Mulongo — is the same age as Wsemwa and was born in the first month of the third quarter of the same year. However, he has spent in the company a third the time that Wsemwa has.

Pokorui — has spent in the company twice the time that Mulongo has. This number plus four dozen is his age.

Questions

a) Draw a table to show the ages of the truckers and the time they have spent in the company.

b) Identify the trucker who has spent the:
 i) least time in the company
 ii) longest time in the company
 iii) third least time in the company

b) Identify the trucker who has spent the:
 i) least time in the company
 ii) longest time in the company
 iii) third least time in the company

c)Arrange the truckers who are agemates beginning with the youngest.

1) Examine the challenges faced by the long distance truckers in East Africa during this period of COVID-19 lockdown.
2) Suggest possible solutions to the challenges that they face.

6.6 Read the passage below and answer the questions that follow.

I have often thought of it as one of the most barbarous customs in the world, considering us as civilized and a Christian country, that we deny the advantages of education to women. We reproach the sex everyday with folly and impertinence, while I am confident, had they the advantages of education equal to us, they would be guilty of less than ourselves.

One would wonder, indeed, how it should happen that women are not conversable at all, since they are only beholden to natural parts for all their natural knowledge. Their youth is spent to teach them to stitch and sew or make baubles. They are taught to read indeed, and perhaps to know when they do right or wrong. I had more need to go to school than be married.

I need not enlarge on the loss the defect of education is to the sex, nor argue the benefit of the contrary practice; it is a thing to be more easily granted than remedied. This chapter is but an essay at the thing, and I refer the practice to those happy days, if ever they shall be, when men shall be wise enough to mend it.

Questions

a) Give the passage a suitable title.

b) What is the meaning of the following statements as used in the passage:
 i) The soul is placed in the body like a rough diamond, and must be polished or the lustre of it will never appear.
 ii) A woman well-bred and well taught furnished with the additional accomplishments of knowledge and behaviour is a creature without comparison.
 iii) This is too evident to need any demonstration.

(c) Using about 100 words summarize the passage.

(d) Give the meaning of the words and phrases in bold type as used in the passage:
 i) Barbarous customs
 ii) Conversable
 iii) Convex
 iv) Manifest
 v) Fortify the privilege
 vi) Vie
 vii) Retentive
 viii) Emblem of sublime employments
 ix) Degenerates
 x) Cloistered

Look out for A’Level Geography, Economics, Literature & IT tomorrow.

Answers and more practice questions next Friday.