Our country, our future

525/1

S6 CHEMISTRY

Exam 7

PAPER 1

DURATION: 2 HOUR 45 MINUTES

Instructions:
- This paper consists of two sections A and B
- Section A is compulsory.
- Attempt only six questions in section B
- Answers must be written in the spaces provided only
SECTION A

Answer all questions from this section.

1. The standard reduction electrode potentials ($E^\text{\textregistered}$) for some half cells are given in the table below.

<table>
<thead>
<tr>
<th>Half cell</th>
<th>$E^\text{\textregistered}$ (v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Fe}^{2+}{(aq)} + \text{Fe}^{3+}{(aq)}$</td>
<td>+0.77</td>
</tr>
<tr>
<td>$\text{S}^{2-}{(aq)} + \text{H}{2} \rightarrow \text{H}{2} \text{S}{(aq)}$</td>
<td>+0.14</td>
</tr>
</tbody>
</table>

a) Write the
 i) Cell rotation

(ii) Equation of reaction that takes place at the anode and cathode

Anode

Cathode

 ii) Equation for the overall cell reaction.

 (1 ½ mks)

(b) State whether the reaction is feasible or not and give a reason for your answer. (1mk)

2. (a) State what is observed and write equation of reaction in each case when the following compounds are mixed.
 a) Methanoic acid and ammoniacal silver nitrate solution heated

 Observation

 Equation
(b) Benzoic acid and aqueous sodium bicarbonate solution.
Observation;

Equation;

c) Propanone and Brady's solution.
Observation;

Equation;

3. Calculate the boiling point of a solution formed by mixing 8g of glucose with 120g of water. \((K_b \text{ for water} = 5.2^\circ \mathrm{Cmol}^{-1} \mathrm{kg}^{-1})\)
4. a) State three reasons for the difference in properties between fluorine and other group(VII) elements. (3 mks)

b) Write equation for the reaction that takes place between the following compounds.
 i) Silicon (iv) oxide and hydrofluoric acid. (1 ½ mks)

 ii) Fluorine and water (1 ½ mks)

5. Complete the following reactions and write the accepted mechanism.
 (a) \[\text{Conc. } \text{H}_2\text{SO}_4 \]

 (b) \[\text{CH}_3\text{CH}^\text{O} \text{CH}_3 \rightarrow \text{Na}_2\text{SO}_3 \rightarrow \text{H}^+ \]

6. State what would be observed and write equation(s) for the reaction(s) that would take place:
 (a) When aqueous sodium sulphite solution is added to acidified potassium manganate (vii) solution

Observation.

Equation
(b) When aluminium powder is added to iron (iii) chloride.

Observation.

Equation.

7. a) Write the electronic configuration of
 i) Nitrogen

ii) Phosphorus

b) Explain why nitrogen only forms (NCl₃) whereas phosphorus forms the chlorides PCl₃ and PCl₅.

c) Write equation(s) for the hydrolysis of phosphorus chlorides by water.
 i) phosphorus chloride

 equation

ii) phosphorus (III) chloride
8. (a) When 20cm3 of a hydrocarbon Z was exploded in 200cm3 of oxygen (excess), it completely burnt with a sooty flame. The volume of residual gas after cooling to room temperature was 160cm3. On addition of aqueous potassium hydroxide to the residual gas, the final volume of gas was 20cm3. Calculate the molecular formula of Z.

\[\text{(3mks)} \]

(b) When Z was heated with alkaline potassium manganate (VII) solution forms a colourless solution which cooled in the presence of dilute sulphuric acid to form a crystalline solid P.

i) Identify;

\[Z \]

\[\text{(1mk)} \]

P

\[\text{(ii) Write equations to show how P is formed.} \]

\[\text{(1 ½ mks)} \]

9. (a) Explain why diffusion in solution is very much slower than in gases.
(b) 141.4 cm3 of gas X diffused through a porous plug in the same time as it took 50 cm3 of oxygen to diffuse through the same plug under identical conditions. Calculate the reactive molecular mass of X

SECTION B

Attempt only six questions in this section

10. State what is observed and write equation for the reaction that takes place when
 a) Potassium iodide is added to acidified hydrogen peroxide solution
 Observation;
 Equation;

(b) Concentrated hydrochloric acid is added drop wise until in excess to aqueous solution containing cobalt (II) ions.
 Observation;
 Equation;
(c) Aqueous sodium hydroxide is added drop wise to aqueous solution containing beryllium (II) ions.
Observation;

Equation;

11. a) A compound Y contains mass of 22.86% oxygen, 8.57% hydrogen and the rest is carbon.
 i) Calculate the empirical formula of Y. (2 \(\frac{1}{2}\) mks)

 ii) When 0.30g of Y is vaporized at 80°C and 700mmHg pressure, it occupied a volume of 134.77cm\(^3\). Determine the molecular formula of Y. (3 \(\frac{1}{2}\) mks)

b) Y forms a yellow precipitate with 2, 4-dinitrophenyl-hydrazine and does not react with Tollens's reagent. (1 mk)
c) Write equation for the formation of a yellow precipitate in (b). (2mks)

12. a) State three characteristics of chemical equilibrium. (1 ½ mks)

 c) Phosphorus (V) chloride when heated decomposed according to the following equation.

 $$ \text{PCl}_5(\ell) \rightleftharpoons \text{PCl}_3(\ell) + \text{Cl}_2(\ell) $$

 i) Write the expression for the equilibrium constant K_C. (1mk)

 ii) When 1 mole of phosphorus (V) chloride was heated in a closed vessel at 350°C, the equilibrium mixture was found to contain 38.4% of chlorine. Calculate the equilibrium constant K_C at 350°C. (3 ½ mks)

 iii) the equilibrium constant of 250°C is 1.54. State whether the reaction is exothermic or endothermic. Give a reason for your answer. (1 ½ mks)
c) State what would happen to the concentration of chlorine if the pressure is the vessel was decreased while the temperature is maintained at 350°C. Give a reason for your answer. (1½ mks)

13. Write equation to show the following conversions can be effected. (Include conditions for the reactions.)
 a) Benzoic acid to phenylamine (3 mks)
 b) Ethene to Butan-2-ol
 c) 1-chloro ethane to ethanamide

14. a) i) Explain what is meant by an acid-base indicator. (1 mk)

 ii) Explain why titration experiments only one or two drops of are used (1 mk)

b) The table gives data obtained when 100 cm³ of propanoic acid was titrated with 1.0 M sodium hydroxide solution.

<table>
<thead>
<tr>
<th>Volume of NaOH(1M) added (cm³)</th>
<th>0.0</th>
<th>1.0</th>
<th>5.0</th>
<th>9.0</th>
<th>9.5</th>
<th>10.5</th>
<th>11.0</th>
<th>15.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH of solution</td>
<td>2.94</td>
<td>3.92</td>
<td>4.87</td>
<td>5.82</td>
<td>6.15</td>
<td>11.70</td>
<td>12.00</td>
<td>12.70</td>
</tr>
</tbody>
</table>

i) Draw a graph of pH against the volume of sodium hydroxide. (2½ mks)
ii) Explain the shape of the graph, you have drawn in b(i). (2½ mks)
iii) Determine the pH of the solution at equivalence point. (1mk)

iv) Which of following indicators would be suitable for the titration? Give a reason for your answer.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Methyl red</th>
<th>Bromothymol blue</th>
<th>Phenol red</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH range</td>
<td>4.2 – 6.3</td>
<td>6.0 – 7.6</td>
<td>6.8 – 8.4</td>
</tr>
</tbody>
</table>

Indicator; ... (⅓ mk)

Reason ... (⅓ mk)

15. a) Compare the following properties of group (U) and group (I) elements. In each case give a reason for your answer. (1 ⅓ mks)

i) first ionization energy
ii) melting points

iii) electro positivity

b) The decomposition temperatures of the carbonates of group (II) elements are given below

<table>
<thead>
<tr>
<th>Carbonate</th>
<th>MgCO₃</th>
<th>CaCO₃</th>
<th>SrCO₃</th>
<th>BaCO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decomposition temperature (°C)</td>
<td>404</td>
<td>826</td>
<td>1098</td>
<td>1370</td>
</tr>
</tbody>
</table>

i) State how the decomposition temperatures vary. (1 mk)

ii) Explain your answer in b(i). (3 ½ mks)

16. Name a reagent that can be used to differentiate between the following pairs of compounds. State what would be observed if each compound is treated with the reagent you have named.

Name of reagent (s)

Observation(s)
17. Ethanol can be produced by fermentation of molasses.
 a) i) Name two other raw materials from which ethanol can be produced by fermentation.

 iii) Write equations to show how crude ethanol can be obtained from the materials named above. (3mks)
b) Describe how 100% (absolute) ethanol can be produced from crude ethanol produced in (a) (ii).

(2mks)

c) Write equation(s) to show each of the following compounds could be obtained from ethanol.

i) polythene

(1 1/2 mks)

iii) ethoxyethane

(1 1/2 mks)