Instructions to candidates:

Answer all questions in section A and six questions in section B.
All questions are to be answered in the spaces provided.
The periodic table, with relative atomic masses, is supplied at the end of the paper.
Mathematical tables (3 figure tables are adequate) or non-programmable scientific electronic calculators may be used.

SECTION A: (46 MARKS)

1. (a) Complete the following nuclear equations (2 marks)

 (i) \[^{31}_{15} P + ^{2}_{1} H \rightarrow \ldots \ldots \ldots \ldots + ^{1}_{1} H \]

 (ii) \[^{7}_{3} Li \rightarrow 2 ^{4}_{2} He \]

 (iii) \[^{14}_{7} C \rightarrow ^{14}_{7} N+ \ldots \ldots \]

 (iv) \[^{214}_{83} Bi \rightarrow 0 ^{0}_{-1} e^+ \ldots \ldots \]

 (b) The half life of bismuth is 19.7 minutes. Determine the time taken for 75% by mass of the bismuth to decay (3 marks)
2. (a) Explain what is meant by the term oxidation number (1 m)

(b) Determine the oxidation number of
(i) sulphur in $S_2O_8^{2-}$ and SO_4^{2-}

(ii) Manganese in MnO_4^-

(c) Write the half equation for the conversion of $S_2O_8^{2-}$ to SO_4^{2-} (1 mark)

(d) Complete the following and balance the equations
(i) $S_2O_8^{2-} + I^- \rightarrow$

(ii) $MnO_4^- + Fe^{2+} + H^+ \rightarrow$
3. (a) Complete the following equations and in each case give the IUPAC name of the main organic product
(@ 1 mark)

(i) \((\text{CH}_3)_2\text{CBr} \text{ CH}_3 \quad \xrightarrow{\text{C}_2\text{H}_5\text{OK}^+ / \text{C}_2\text{H}_5\text{OH} \text{ heat}} \)

(ii) \(\text{CH}_3\text{C} \equiv \text{CH} + \text{H}_2\text{O} \quad \xrightarrow{\text{Hg}^{2+}(\text{aq}) / \text{H}_2\text{SO}_4} \)

(iii) \(\text{NH}_2 \quad \xrightarrow{\text{NaNO}_2 / \text{dil HCl 0°C}} \)

(b) Complete the following equations and in each case write a mechanism for the reaction
(@ 1 ½ marks)

(i) \(\text{CH}_3\text{CH} = \text{CH}_2 \quad \xrightarrow{\text{Cl}_2 / \text{H}_2\text{O}} \)

(ii) \(\text{ } \quad \xrightarrow{\text{AlCl}_3} \)
4. (a) Sketch and name the shape of each of the following species (4 marks)

<table>
<thead>
<tr>
<th>Species</th>
<th>Shape</th>
<th>Name of shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₄⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCl₅</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCl₃</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) The atomic number of element X is 26.
 (i) Write the outermost electron configuration of x (½ mark)
 ………………………………………………………………………………………………………
 ………………………………………………………………………………………………………
 ………………………………………………………………………………………………………
 (ii) State the possible oxidation states X can show (1½ marks)
 ………………………………………………………………………………………………………
 ………………………………………………………………………………………………………

5. (a) Define what is meant by the term partition coefficient (1 mark)
 ………………………………………………………………………………………………………
 ………………………………………………………………………………………………………
 ………………………………………………………………………………………………………

(b) 100 cm³ of aqueous solution contained 50g of S. Calculate the mass of S that remained in the aqueous layer when the solution was shaken with
 (i) 100 cm³ of solvent A (1½ marks)
 ………………………………………………………………………………………………………
(ii) Twice with 50 cm³ of solvent A (The partition coefficient of S between A and water is 10:1) (2 ½ marks)

(c) Comment on your results in b (i) and (ii) (1 mark)

6. (a) What is meant by
 (i) atomisation energy (2 marks)
 (ii) bond energy

(b) Carbon reacts with hydrogen
 (i) Write an equation for the reaction
 (ii) Draw a labelled Born Haber cycle and identify the energy changes involved at each step when carbon react with hydrogen (1 mark)
(c) Given the enthalpy of formation of methane and atomisation energy of carbon and hydrogen are $-\text{75 Kjmol}^{-1}$, 715 Kjmol^{-1} and 436 Kjmol^{-1} respectively, calculate the bond energy for C–H bond. (2 marks)

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

7. (a) A mixture of water and Bromobenzene when steam distilled at standard pressure boils at 95.7°C whereas the b.p of water and Bromobenzene at standard pressure is 100°C and 155°C respectively. Explain why the mixture boils at 95.7°C (2marks)

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(b) Calculate the percentage by mass of Bromobenzene in the distillate from the mixture in (a). (The saturated vapour pressure of water at 95.7°C is 655mmHg).

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

8. (a) Why does the vapour pressure of a given mass of solvent decrease when a known mass of non-volatile solute is added to the solvent?

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(b) A solution was prepared by dissolving 7.5g of propan - 1,2,3- triol (glycerol), $\text{C}_3\text{H}_8\text{O}_3$ in 200g of water at 25°C and at standard pressure. Calculate the boiling point of the solution at standard pressure (Kb of water = 0.52 K kgmol$^{-1}$ - 1) (3 marks)

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

More exams? browse: digitaltears.co.ug
For consultations call: +256 776 802709
9. (a) Acidified potassium dichromate was reacted with potassium iodide
 (i) State what was observed (1 mark)
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
 (ii) Write the half ionic equation and overall equation for the reaction (2 marks)
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………

 SECTION B: (54 MARKS)

10. (a) What is meant by (@ 1 ½ marks)
 (i) first ionisation energy
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
 (ii) electron affinity
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………

 (b) The first ionisation energies and first electron affinities of group (VII) elements are given in the table below.

<table>
<thead>
<tr>
<th>Name of element</th>
<th>First ionisation energy/KJmol⁻¹</th>
<th>First electron affinity/KJmol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorine</td>
<td>1681</td>
<td>– 328</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1250</td>
<td>– 349</td>
</tr>
<tr>
<td>Bromine</td>
<td>1139</td>
<td>– 325</td>
</tr>
<tr>
<td>Iodine</td>
<td>1007</td>
<td>– 295</td>
</tr>
</tbody>
</table>

 (i) State how the first electron affinities of group (VII) elements generally vary with their first ionisation energies (1 mark)
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
(ii) Explain the trend in first electron affinity of group (VII) elements \((3 \text{ marks}) \)

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

(c) The boiling point of group (VII) elements increases down the group. Explain this observation \((2 \text{ marks}) \)

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

11. (a) Write an expression for the

(i) acid dissociation constant, \(K_a \), for ethanoic acid \((2 \text{ marks}) \)

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

(ii) relationship between acid dissociation \(K_a \) and the degree of ionisation of an acid \((1 \text{ mark}) \)

…………………………………………………………………………………………

…………………………………………………………………………………………

(b) The molar conductivity at infinite dilution of ethanoic acid at 20°C is \(3.5 \times 10^{-2} \) Sm\(^2\) mol\(^{-1}\) while a \(1.6 \times 10^{-2} \) molar conductivity of ethanoic acid at 20°C is \(1.225 \times 10^{-3} \) Sm\(^2\) mol\(^{-1}\). Calculate

(i) The degree of ionisation of the acid at 20°C \((1 \text{ mark}) \)

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

(ii) The pH of the acid \((3 \text{ marks}) \)

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

(c) Besides concentration, state one other factor that can affect the pH of the acid \((1 \text{ mark}) \)

…………………………………………………………………………………………

12. State what would be observed and write equations for the reactions that take place when the following compounds are reacted
(a) Aqueous iron (III) chloride with sodium carbonate (3 marks)

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(b) Iron (II) ions and hydrogen peroxide in acidic conditions. (3 marks)

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(c) Chromium (III) sulphate with sodium hydroxide dropwise until in excess (3 marks)

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

13. Write equations to show how the following conversions can be made
(a) ethyne from ethanol (4 marks)

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(b) Benzoic acid from benzene (2 marks)

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(c) Propane from 1 bromobutane (3 marks)

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

14. (a) Phenylamine hydrochloride $C_6H_5NH_3^+Cl^-$ undergoes hydrolysis when dissolved in water. Write an

(i) equation for the reaction (2 mark)

…………………………………………………………………………………………
…………………………………………………………………………………………

(ii) expression for the hydrolysis constant K_h (1 mark)
(b) A 0.2 molar solution of phenylamine hydrochloride has a pH = 3.5, calculate:

(i) the concentration of hydrogen ions in solution (3 marks)

(ii) the hydrolysis constant, Kh of phenylamine hydrochloride (3 marks)

15. The table below gives some data on substances A to D

<table>
<thead>
<tr>
<th>Substance</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point (°C)</td>
<td>1610</td>
<td>– 183</td>
<td>2015</td>
<td>98</td>
</tr>
<tr>
<td>Conduction of electricity in molten state</td>
<td>Deos not</td>
<td>Does not</td>
<td>Does</td>
<td>Does</td>
</tr>
</tbody>
</table>

(a) Classify the solid formed by each substance according to its structure and type of bonding

<table>
<thead>
<tr>
<th>Substance</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of bonding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) In the series Na, Mg, Al, Si, P, S and Cl

State element with

<table>
<thead>
<tr>
<th>(i) highest melting point</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii) Smallest atomic radius</td>
<td></td>
</tr>
</tbody>
</table>
(iii) largest ionisation energy

(iv) smallest electronegativity

(2 marks)

(c) Explain why the element you have stated in (b) (i) has the highest melting point

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

16. Hydrogen iodide decomposes when heated according to the equation

\[2\text{HI(g)} \xrightarrow{\Delta} \text{H}_2\text{(g)} + \text{I}_2\text{(g)} \quad \Delta H = +11.3 \text{ KJmol}^{-1} \]

(a) Write an expression for the equilibrium constant \(K_c \) for the reaction

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(c) 1.54g of hydrogen iodide was heated in a 600cm\(^3\) bulb at 530°C. When equilibrium was attained, the bulb was cooled to room temperature and broken under potassium iodide solution. The iodine formed from the decomposition required 67.0cm\(^3\) of 0.1M sodium thiosulphate solution for complete reaction. Calculate

(i) the number of moles of hydrogen iodide in 1.54g

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(ii) the number of moles of iodine formed when hydrogen iodide was decomposed

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(iii) the value of \(K_c \) at 530°C.

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………

(c) State what would be the effect on the value of \(K_c \) if

(i) the temperature was raised from 530°C to 800°C
(ii) the volume of the bulb was increased to 1200 cm\(^3\) (1 mark)

17. In the extraction of iron, haematite is mixed with coke and limestone and then heated in a blast furnace.

(a) State the purpose of adding

(i) coke (2 marks)

(ii) limestone (2 marks)

(b) Explain why iron can be extracted by the method described above (2 mark)

(c) (i) Name one other method that could be used to extract iron from its ore (1 mark)

(ii) Suggest a reason why the method you have named in c (i) is not commonly used in the production of iron (1 mark)

(d) Write any one equation that illustrates the reduction of the ore in the blast furnace. (2 marks)

END